Azimuthal asymmetries from hadronic versus QCD vacuum effects

Daniël Boer Free University, Amsterdam

Outline

- ullet Anomalously large $\langle\cos(2\phi)
 angle$ asymmetry in Drell-Yan
- A QCD vacuum effect?
- A hadronic effect?
- Similarities and differences.
- An instanton picture
- Handedness correlations in e^+e^- annihilation
- Conclusions

Azimuthal asymmetries in Drell-Yan in theory

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \frac{\lambda}{3} \cos^2 \theta + \frac{\mu}{3} \sin^2 \theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)$$

Parton Model $\mathcal{O}(\alpha_s^0)$ $\lambda=1,\ \mu=\nu=0$

LO pQCD $\mathcal{O}(\alpha_s)$ $1 - \lambda - 2\nu = 0$ Lam-Tung relation

NLO $\mathcal{O}(\alpha_s^2)$ $(1 - \lambda - 2\nu) \lesssim 0.02$ for $|\mathbfilde{k}_T| \leq 3$ GeV

Azimuthal asymmetries in Drell-Yan in experiment

Data from NA10 Collab. ('86/'88) & E615 Collab. ('89)

Data for $\pi^- N \to \mu^+ \mu^- X$, with N=D,W with π^- -beams of 140-286 GeV lepton pair invariant mass $Q\sim 4-12$ GeV

NA10: $-(1-\lambda-2\nu)\approx 0.6$ at $|{m k}_T|\sim 2-3$ GeV

E615: see figure

Large deviation from Lam-Tung relation

NA10 data, ZPC 37 ('88) 545

BNL, February 18, 2005 4

Explanations of large deviation from Lam-Tung relation

Unlikely explanations:

- NNLO corrections
- Higher twist effect ($Q \sim 4-12$ GeV and $\mu \approx 0$)
- Nuclear effect (although $\sigma(\mathbf{k}_T)_W/\sigma(\mathbf{k}_T)_D$ is an increasing function of p_T , $\nu(\mathbf{k}_T)$ shows no apparent nuclear dependence)

Possible explanations to be discussed:

• QCD vacuum effect Brandenburg, Nachtmann & Mirkes, ZPC 60 ('93) 697

• Hadronic effect D.B., PRD 60 ('99) 014012

Recent comparative study D.B., Brandenburg, Nachtmann & Utermann, EPJC ('05)

Usually the DY process at $Q\sim 4-12$ GeV is described by collinear factorization

Collinear quarks inside unpolarized hadrons are unpolarized themselves

$$\rho^{(q,\bar{q})} = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} \}$$

The QCD vacuum may alter this
The gluon condensate leads to a chromomagnetic field strength

$$\langle g^2 \boldsymbol{B}^a(x) \cdot \boldsymbol{B}^a(x) \rangle \approx (700 \, \text{MeV})^4$$

Savvidy; Shifman, Vainshtein, Zakharov; ...

Fluctuating domain structure of the vacuum with correlation length $a\approx 0.35$ fm

Time for traversing such a vacuum domain: $t \approx a$

Transverse polarization is built up due to the Sokolov-Ternov effect:

$$t \propto \frac{m_q^5}{|g\mathbf{B}_T|^3\gamma^2} \Longrightarrow t \ll a$$

Nachtmann & Reiter, ZPC 24 ('84) 283 Botz, Haberl & Nachtmann, ZPC 67 ('95) 143

On average no quark polarization, but:

The QCD vacuum can induce a spin correlation between the annihilating $qar{q}$

There will be a polarization correlation if the q and \bar{q} annihilate in the same domain. The spin density matrix becomes

$$\rho^{(q,\bar{q})} = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \otimes \mathbf{1} + G_j \, \mathbf{1} \otimes \boldsymbol{\sigma}_j + H_{ij} \, \boldsymbol{\sigma}_i \otimes \boldsymbol{\sigma}_j) \}$$

If $H_{ij} = F_i G_j$, then the spin density matrix factorizes

$$\rho^{(q,\bar{q})} = \frac{1}{2} \{ \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \} \otimes \frac{1}{2} \{ \mathbf{1} + G_j \, \boldsymbol{\sigma}_j \}$$

Otherwise it could be called entangled

Brandenburg, Nachtmann & Mirkes (ZPC 60 ('93) 697) demonstrated that

$$H_{ii} \neq 0 \implies \langle \cos(2\phi) \rangle \neq 0$$

More specifically,

$$\kappa \equiv -\frac{1}{4}(1 - \lambda - 2\nu) \approx \left\langle \frac{H_{22} - H_{11}}{1 + H_{33}} \right\rangle$$

A simple dependence of $(H_{22}-H_{11})/(1+H_{33})$ on $|{m k_T}|$ could fit the data very well

$$\kappa = \kappa_0 \frac{|\mathbf{k}_T|^4}{|\mathbf{k}_T|^4 + m_T^4}, \quad \kappa_0 = 0.17, \quad m_T = 1.5 \text{ GeV}$$

Note that for large $|{m k}_T|$: $\kappa \to \kappa_0$, a constant value

Transverse momenta also become correlated by the deflection due to $m{B}$, but this is not the dominant effect in this observable

Explanation as a hadronic effect

Assume that factorization of soft and hard energy scales ⇒ factorization of the spin density matrices

But drop assumption of collinear factorization

Transverse polarization of a noncollinear quark inside an unpolarized hadron in principle can have a preferred direction

$$\mathbf{h}_{1}^{\perp} = \mathbf{P}$$

D.B. & Mulders, PRD 57 ('98) 5780

Explaining the unpolarized DY data

$$h_1^{\perp} \neq 0 \implies$$
 deviation from Lam-Tung relation

Offers a tree level ($\lambda=1,\,\mu=0$) explanation of NA10 data:

$$u \propto h_1^{\perp}(\pi) h_1^{\perp}(N)$$

Fit h_1^{\perp} to data

D.B., PRD 60 ('99) 014012

Hadronic effect versus vacuum effect

Nonzero h_1^{\perp} gives rise to

$$\rho^{(q,\bar{q})} = \rho^{(q)} \otimes \rho^{(\bar{q})}$$

$$\rho^{(q)} = \frac{1}{2} \left\{ \mathbf{1} + \frac{h_1^{\perp}}{f_1} \frac{x_1}{M_1} (\mathbf{e}_3 \times \mathbf{p}_1) \cdot \boldsymbol{\sigma} \right\} \equiv \frac{1}{2} \left\{ \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \right\}$$

$$\rho^{(\bar{q})} = \frac{1}{2} \left\{ \mathbf{1} - \frac{\bar{h}_1^{\perp}}{\bar{f}_1} \frac{x_2}{M_2} (\mathbf{e}_3 \times \mathbf{p}_2) \cdot \boldsymbol{\sigma} \right\} \equiv \frac{1}{2} \left\{ \mathbf{1} + G_j \, \boldsymbol{\sigma}_j \right\}$$

This implies $H_{ij} = F_i G_j$ and $H_{33} = 0$

Unfortunately it is hard to observe the difference between $H_{33}=0$ and $H_{33}\neq0$

Not only fit, but also model calculations of h_1^\perp and asymmetries have been performed Goldstein & Gamberg, hep-ph/0209085; D.B., Brodsky & Hwang, PRD 67 ('03) 054003 Lü & Ma, PRD 70 ('04) 094044

Hadronic effect versus vacuum effect

	$h_1^{\perp} \neq 0$	QCD vacuum effect
$ ho^{(q,ar{q})}$	$ ho^{(q)}\otimes ho^{(ar{q})}$	possibly entangled
Q dependence	$\kappa \sim 1/Q$?
$ m{k}_T o \infty$	$\kappa \to 0$	need not disappear $(\kappa ightarrow \kappa_0)$
flavor dependence	yes	flavor blind
x dependence	yes	yes, but flavor blind

Different experiments $(\pi^{\pm}, p, \bar{p}, \dots$ beams) are needed at different kinematical regimes Polarized beams can also help

Sudakov suppression

Assuming Gaussian k_T dependence for h_1^{\perp} , the $\cos(2\phi)$ asymmetry is proportional to

$$\mathcal{A}(Q_T) \equiv M^2 \frac{\int_0^\infty db \, b^3 \, J_2(bQ_T) \, \exp\left(-S(b_*) - S_{NP}(b)\right)}{\int_0^\infty db \, b \, J_0(bQ_T) \, \exp\left(-S(b_*) - S_{NP}(b)\right)} \qquad Q_T = |\mathbf{k}_T|$$

Resummation of soft gluon emissions

Generic Sudakov factor → figure

D.B., NPB 603 ('01) 195

Considerable Sudakov suppression with increasing Q: $\sim 1/Q$

Hadronic effect versus vacuum effect

	$h_1^{\perp} \neq 0$	QCD vacuum effect
$ ho^{(q,ar{q})}$	$ ho^{(q)}\otimes ho^{(ar{q})}$	possibly entangled
Q dependence	$\kappa \sim 1/Q$?
$ m{k}_T o \infty$	$\kappa \to 0$	need not disappear $(\kappa ightarrow \kappa_0)$
flavor dependence	yes	flavor blind
x dependence	yes	yes, but flavor blind

Different experiments $(\pi^{\pm}, p, \bar{p}, \dots$ beams) are needed at different kinematical regimes

Polarized beams can also help

The polarized Drell-Yan process

In the case of one transversely polarized hadron (choosing $\lambda = 1$ and $\mu = 0$):

$$\frac{d\sigma}{d\Omega \ d\phi_S} \propto 1 + \cos^2 \theta + \sin^2 \theta \left[\frac{\nu}{2} \cos 2\phi - \rho |S_T| \sin(\phi + \phi_S) \right] + \dots$$

Assuming *u*-quark dominance and Gaussian k_T dependence for h_1^{\perp} :

It offers a probe of transversity

Data to test h_1^{\perp} hypothesis

Possible future DY data

RHIC: can measure ν and $\rho \Longrightarrow$ information on h_1^{\perp} and h_1

Also provides information on flavor dependence (p p versus πp)

Fermilab: ν in $p \bar{p} \rightarrow \mu^+ \mu^- X$ (advantage of \bar{p} : valence anti-quarks, like π)

GSI: future PANDA (ν) and PAX (ρ) experiments $p \bar{p} \rightarrow l^+ l^- X$

But at considerably lower energies ($\sqrt{s} \sim 7-14$ GeV)

Semi-inclusive DIS

The $\langle \cos 2\phi \rangle$ in $e\, p \to e'\, \pi\, X$ would be $\propto h_1^\perp H_1^\perp$

 H_1^\perp is the fragmentation function analogue of h_1^\perp (also unknown and unrelated in magnitude)

Instanton model

A calculation similar to "Instanton induced azimuthal spin asymmetry in DIS", by Ostrovsky & Shuryak, PRD 71 ('05) 014037, can be done

The general $n_f = 3$ case (and $n_g \neq 0$) is non-factorizing, e.g.

But perhaps suppressed

Instanton model

The effective $n_f = 1$ case is factorizing:

Longitudinal jet handedness

Longitudinal jet handedness studied as a means to probe helicity of fragmenting quarks Nachtmann '77; Efremov, Mankiewicz & Tornqvist, '92; Ryskin '93

A longitudinally polarized, fragmenting quark creates a chromomagnetic field that deflects secondary $q\bar{q}$ pairs in a preferred direction

This leads to a handedness of h^+ and h^- momenta w.r.t. jet axis:

$$X \equiv (\hat{k}_{+} \times \hat{k}_{-}) \cdot \hat{t} = \sin(\phi)$$

The pair is called left-handed if X > 0

$$H \equiv \frac{N(X > 0) - N(X < 0)}{N(X > 0) + N(X < 0)} = \alpha P$$

P is the longitudinal quark polarization

SLD ('95):
$$H < 5\%$$
 (95 % CL) DELPHI ('94): $H = (1.2 \pm 0.5)\%$

Application to e^+e^-

Consider the handedness correlation in $e^+e^- \rightarrow 2$ jets X:

$$C_{LL} \equiv \frac{N(X_1 X_2 < 0) - N(X_1 X_2 > 0)}{N(X_1 X_2 < 0) + N(X_1 X_2 > 0)}$$

Efremov, Potashnikova & Tkatchev, '94

Longitudinal jet handedness is a hadronization phenomenon and is not affected by the opposite side fragmentation

Charge conjugation, $\alpha^{\bar{q}} = -\alpha^q$, leads to $C_{LL} < 0$ expectation

DELPHI data hint at $C_{LL} > 0$

Efremov & Tkatchev, Acta Physica Polonica B 29 ('98) 1385

Influence of chromomagnetic vacuum field in e^+e^-

The nonzero vacuum chromomagnetic field creates a global effect, whereas longitudinal jet handedness is a local effect

Nonzero vacuum chromomagnetic field (B^a_{\parallel}) creates a positive (C-odd)² correlation Estimated to be $C_{LL} \approx +0.5\%$ on the Z pole

Efremov & Kharzeev, PLB 366 ('96) 311

A similar idea was put forward for C_{LL} defined using cumulative momenta

$$ec{k}^{\pm} = \sum_{\mathrm{jet}} ec{k}_{i}^{\pm}$$

Czyż & Turnau, PRD 53 ('96) 1452

The quark and antiquark need not be polarized on average $(H = 0 \Rightarrow C_{LL} = 0)$ The experiment need not be done at the Z-pole

For SLD and DELPHI statistics was a limiting factor, as opposed to BELLE and BABAR, even off-resonance

Two-hadron fragmentation functions

Consider a factorized description in terms of 2-hadron fragmentation functions

$$\Delta = \Delta(k; P_h, R)$$
 $P_h = P_1 + P_2$
 $R = (P_1 - P_2)/2$
 $z = z_1 + z_2 = P_h^-/k^ R_T = (z_1 P_2 - z_2 P_1)/z$

A longitudinally polarized quark leads to a 2-hadron fragmentation function $G_1^{\perp}(z,M_h^2)$ An analyzer of quark helicity due to a $(\mathbf{k}_T \times \mathbf{R}_T)$ correlation

In fact, a direct link with longitudinal jet handedness can be made

G_1^{\perp} definition details

$$\frac{\pi}{2z} \int dk^{+} \Delta(k; P_{h}, R) \Big|_{k^{-} = P_{h}^{-}/z, \mathbf{k}_{T}} = D_{1} \eta_{-}$$

$$-G_{1}^{\perp} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} n_{-}^{\nu} k_{T}^{\rho} R_{T}^{\sigma}}{M_{1} M_{2}} \gamma_{5} + H_{1}^{\triangleleft} \frac{\sigma_{\mu\nu} R_{T}^{\mu} n_{-}^{\nu}}{M_{1} + M_{2}} + H_{1}^{\perp} \frac{\sigma_{\mu\nu} k_{T}^{\mu} n_{-}^{\nu}}{M_{1} + M_{2}}$$

Bianconi et al., PRD 62 ('00) 034008

Each function is a function of the quark flavor a and the variables $z, \xi, \mathbf{k}_T^2, \mathbf{R}_T^2, \mathbf{k}_T \cdot \mathbf{R}_T$, where $\xi = P_1^-/(P_1^- + P_2^-)$

$$egin{array}{lll} D_1(z,M_h^2) &\equiv \int d\xi \int_0^{2\pi} d\phi_R \int dm{k}_T \ D_1(z,\xi,m{k}_T^2,m{R}_T^2,m{k}_T\cdotm{R}_T) \ & \\ G_1^\perp(z,M_h^2) &\equiv \int d\xi \int_0^{2\pi} d\phi_R \int dm{k}_T \ m{k}_T\cdotm{R}_T \ G_1^\perp(z,\xi,m{k}_T^2,m{R}_T^2,m{k}_T\cdotm{R}_T) \end{array}$$

It is crucial that one is not dealing with collinear factorization

Azimuthal asymmetry from handedness correlations

$$\langle \cos(2(\phi_R - \phi_{\overline{R}})) \rangle \propto \frac{\sum_{a,\overline{a}} e_a^2 z^2 \overline{z}^2 G_1^{\perp a}(z, M_h^2) \overline{G}_1^{\perp a}(\overline{z}, \overline{M}_h^2)}{\sum_{a,\overline{a}} e_a^2 z^2 \overline{z}^2 D_1^a(z, M_h^2) \overline{D}_1^a(\overline{z}, \overline{M}_h^2)}$$

D.B., Jakob, Radici, PRD 67 ('03) 094003

G_1^{\perp} asymmetry

$$\langle \cos(2(\phi_R - \phi_{\overline{R}})) \rangle \propto \frac{\sum_{a,\overline{a}} e_a^2 z^2 \overline{z}^2 G_1^{\perp a}(z, M_h^2) \overline{G}_1^{\perp a}(\overline{z}, \overline{M}_h^2)}{\sum_{a,\overline{a}} e_a^2 z^2 \overline{z}^2 D_1^a(z, M_h^2) \overline{D}_1^a(\overline{z}, \overline{M}_h^2)}$$

The partonic process requires nonzero parton transverse momentum, but the measurement does not require determination of \overline{P}_h^\perp

Note that indeed the quark and antiquark need not be polarized on average for this correlation to be nonzero; it need not be measured on the Z pole

Expectation for B-factories: no average jet handedness in each jet separately

Longitudinal jet handedness

In the process $e \vec{p} \to e' (h_1 h_2) X$ there is an azimuthal asymmetry $\propto g_1 G_1^{\perp}$ as expected from longitudinal jet handedness

$$\frac{d\sigma(\mathbf{e}\vec{\mathbf{p}} \to \mathbf{e'h_1h_2X})_{OL}}{d\Omega \, dx \, dz \, d\xi \, d\mathbf{P}_{h\perp} \, d\mathbf{R}_T} \propto -\lambda \, |\mathbf{R}_T| \, A(y) \, \sin(\phi_h - \phi_R) \, \mathcal{F} \left[\hat{h} \cdot \mathbf{k}_T \, \frac{g_1 \, G_1^{\perp}}{M_1 M_2} \right]$$

Bianconi et al., PRD 62 ('00) 034008

Nowadays g_1 is known to good accuracy, one can extract G_1^{\perp} from $e \, \vec{p} \to e' \, (h_1 h_2) \, X$ and predict the longitudinal jet handedness correlation in $e^+e^- \to (h_1 h_2)(\bar{h}_1 \bar{h}_2) X$

Any experimental deviation from factorization may be related to a CP-violating effect of the QCD vacuum

Conclusions

- $q^{\uparrow}\bar{q}^{\uparrow} \rightarrow \gamma^*$ leads to $\langle \cos(2\phi) \rangle$ asymmetry in DY lepton-pair angular distribution
- Such a spin correlation can arise from QCD vacuum or noncollinear partons
- Flavor dependence would favor a hadronic effect
- ullet Persistence of the asymmetry at large $|oldsymbol{k}_T|$ and Q favors a vacuum effect
- RHIC can provide valuable information on these dependences
- Longitudinal spin correlations lead to an azimuthal asymmetry in $e^+e^- o 2$ jets X
- Such a handedness correlation can arise from QCD vacuum or jet handedness
- \bullet Proposal: study $\langle\cos(2(\phi_R-\phi_{\overline{R}}))\rangle$ at BELLE/BABAR and relate it to SIDIS

 Azimuthal asymmetries allow to study the issue of factorizing hadronic effects versus nonfactorizing QCD vacuum effects